实现数据可用不可见,兼顾安全与应用
随着《数据保护法》《个人信息保护法》等的落地,金融业如何做到既保护数据安全,又充分发挥数据资产价值、高效链接多方数据,成为一项亟需解决的课题。
打破数据孤岛
去年,《数据安全法》《个人信息保护法》先后实施,对数据安全和个人信息保护提出了更严格的要求。与此同时,金融管理部门对于金融业数据安全的执法检查力度加强。严监管趋势下,金融业强化数据应用的安全性与合规性迫在眉睫。
一面是安全,一面是应用,二者如何平衡?今年1月6日发布的《要素市场化配置综合改革试点总体方案》提到,建立健全数据流通交易规则,探索“原始数据不出域、数据可用不可见”的交易范式。隐私计算或成为关键技术。
隐私计算,是一种由两个或多个参与方联合计算的技术和系统,参与方在不泄露各自数据的前提下通过协作对他们的数据进行联合机器学习和分析。在隐私保护计算框架下,参与方的数据不出本地,实现“数据可用不可见”。加拿大工程院及加拿大皇家科学院两院院士杨强表示,隐私计算可以将小数据聚合起来,以“数据可用不可见,数据不动价值动”的形式保障数据安全,发挥数据的价值,进一步提升金融核心业务能力。
“数字经济大潮下,趋严的监管环境对企业及机构在数据保护与数据价值的合理利用之间寻求合理平衡提出了更高要求。”国际咨询机构IDC发布的《IDC创新者,隐私保护计算,2022》报告指出,在数据融合应用和客户隐私保护双重需求驱动下,作为实现数据不动价值动的关键技术,隐私保护计算的应用可以保证参与方的数据不出本地,在保护数据安全的同时实现多源数据的跨域合作,对破解数据保护与融合应用难题提供了可行性思路。